先天性巨结肠是由什么原因引起的?
先天性巨结肠的基本病理变化是在肠壁肌间和粘膜下的神经丛内缺乏神经节细胞,无髓鞘性的副交感神经纤维数量增加且变粗,因此先天性巨结肠又称为“无神经节细胞症”(aganglionosis),由于节细胞的缺如和减少,使病变肠段失去推进式正常蠕动,经常处于痉挛状态,形成功能性肠梗阻,粪便通过困难,痉挛肠管的近端由于长期粪便淤积逐渐扩张、肥厚而形成巨结肠。实际上巨结肠的主要病变是在痉挛肠段,90%左右的病例无神经节细胞肠段位于直肠和乙状结肠远端,个别病例波及全结肠、末端回肠或仅在直肠末端。新生儿期常因病变段肠管痉挛而出现全部结肠甚至小肠极度扩张,反复出现完全性肠梗阻的症状,年龄越大结肠肥厚扩张越明显、越趋局限。
(一)发病原因
1、胚胎学Bodian认为,先天性巨结肠症的肠壁内神经节细胞缺如是一种壁内神经发育停顿,致使外胚层神经纤维无法参与正常的壁内神经丛发育。1954年Yntema和Hamman在胚胎研究发现,消化道的内在神经丛是由中枢神经嵴衍生而来。其神经母细胞沿已发育的迷走神经干迁移至整个消化道壁内,由头端之食管直至尾端之直肠,此即单相发育学说。而Tam等则提出神经节细胞系由口和肛门向中心发育,此即双相发育学说。
1967年Okamoto等对18例胚胎和胎儿进行了研究,发现肌间神经丛系由神经嵴的神经母细胞形成。这些神经母细胞于胚胎第5周开始沿迷走神经干由头侧向尾侧迁移,于第12周达到消化道远端。在胚胎第5周时已在食管壁发现神经母细胞,第6周至胃,第7周达中肠远端,第8周到横结肠中段,最后于12周布满全部消化道管壁至直肠。但是,直肠的末端即内括约肌神经母细胞尚未进入。在胚胎发育后期,肠壁内神经母细胞作为神经元,逐渐发育成为神经节细胞。不难设想,如果由于各类原因导致神经母细胞移行时中途停顿,即可造成肠壁无神经节细胞症。停顿的时间越早,则导致结肠远端无神经节细胞肠管越长。由于直肠、乙状结肠是在消化道的最远端,所以受累的机会最多(约85%)。神经母细胞由肌层向黏膜下发展,在纵肌与环肌形成肌间神经丛,即Auerbach神经丛。黏膜下的神经节细胞乃由肌间神经母细胞移行而来,穿过环行肌后,在黏膜下层形成黏膜深层神经丛,即Henley神经丛。神经母细胞再向内发展形成黏膜浅神经丛,即Meissner神经丛。临床上全层活检主要检查肌间神经丛,而吸引活检是主要检查黏膜下浅神经丛,即Meissner神经丛。国内王光大等对早产婴儿、新生儿、婴幼儿的结肠、直肠肌间神经丛和黏膜下神经丛(包括深层、浅层)神经节细胞进行了研究,其结果也支持上述学说。
近来Okamoto用嗜银染色法检查,发现先天性巨结肠病儿神经节细胞缺如仅限于肠壁,而同属盆丛神经支配的膀胱、前列腺等神经节细胞均为正常。这不仅表现在外来自主神经纤维和自主神经感觉健在,而且其排列结构均无异常。上述结果说明,先天性巨结肠症的病理改变源于肠壁本身,并非因盆丛的原发病变所引起。研究资料还证实盆丛神经(副交感神经)原基在胚胎6周时已经形成,其神经母细胞迂回于直肠周围到膀胱左右基底部,约于第8周时形成膀胱、前列腺(子宫)神经丛,这时尚未见到有明显的分支及神经母细胞进入直肠。直肠壁内神经丛形成比盆丛稍晚,约在第10周以后,然后由盆丛的副交感神经纤维移入结肠直肠壁内与沿消化道迁移来的神经节会合形成肠壁肌间神经丛。如果无肠壁内神经节细胞,则盆丛的副交感神经纤维必定在肌间大量增生,此即病变肠段重要的病理改变之一。如果盆丛发生病变,则肌间神经丛也不可能正常发育,两者相辅相成。近端结肠的副交感神经系来自迷走神经。在全结肠型病例中副交感神经纤维有时减少或缺如
2、遗传学因素Valle(1924)首先发现先天性巨结肠有家族遗传性,此后关于先天性巨结肠的家族性发病报道逐渐增多。随着遗传学的深入研究,认识到先天性巨结肠是遗传与环境因素的联合致病作用,为多基因或多因素遗传病,也有人称之为性修饰多因素遗传病(sex-modified multifactorial inhertitance),遗传度为80%。分子遗传学用于先天性巨结肠的病因学研究后,目前已发现5个突变基因:RET基因、GDNF基因、EDN3基因、EDNRB基因和SOX10基因。
(1)RET原癌基因(proto-oncogene RET):Takahashi与Cooper(1987)年在重组DNA的实验中,首次发现RET原癌基因。RET基因定位于10q11.2区。Martucciello(1992)报道1例10号染色体长臂(10q)缺失的全结肠型先天性巨结肠女性病儿。现已确定,DNA全长约8万个核苷酸(80Kb),有21个外显子,至少有4个转录产物,且在不同的组织中含量不同。RET蛋白为1114个残基跨膜蛋白,有一个富含半胱氨酸的钙粘连素样细胞外区,一个跨膜区和一个催化酪氨酸激酶(TK)的细胞内区。TK受体(TKR)的基本功能是,将细胞外信息转变为可传入细胞内的化学信号。Tahira等(1988)研究小鼠组织中RET的mRNA表达情况:成鼠组织中未能查出RET的mRNA表达,而胚胎鼠的中枢及外周神经系统(包括肠内神经系统)却能查到。Pachnis等(1993)发现,当RET表达量减少一半时,神经节细胞就不能移行到肠壁内。说明RET对肠内神经系统的发育起重要作用。现已证实RET基因突变是引起先天性巨结肠的主要基因,50%家族性先天性巨结肠、7.3%~20%散发性先天性巨结肠,与RET、基因突变有关。
(2)胶质细胞源性神经营养因子(glia cells derived nurotrophic factor,GDNF):GDNF、基因定位于5p12~13.1,为32~42kd的二聚体,有2个外显子,一为151bp,一为485bp GDNF基因突变可能引起先天性巨结肠,也可能使RET突变基因所致疾病的表型不同。但是,先天性巨结肠的GDNF基因突变率仅0.9%~5.5%。1996年确认GDNF是RET基因的配体。TKR将细胞外信息转变为化学信号的过程,包括RET/GDNF-a/GDNF复合体的形成、TK的激活和细胞内靶蛋白的磷酸化3个步骤。其中GDNF提供配体结合区,GDNF-a参与GDNF二聚体的形成,RET提供信号成分。将RET/GDNF称TK信号通路。
(3)内皮素3(EDN3)基因:EDN是日本学者1988年从猪的主动脉内皮细胞培养中分离、纯化的一种多肽,含21个氨基酸,具有强烈的收缩血管、促进细胞增殖和调解体内有关物质释放等生物活性。EDN家族有3个成员。即EDN1、EDN2和EDN3,为关系密切的异构体。内皮素由较大的前蛋白(含238个氨基酸)水解而成,并通过受体起收缩血管的作用。EDN受体(EDNR)有2个:EDNRA、EDNRB,都是G-蛋白偶联的七面螺旋体跨膜蛋白。
(4)内皮素受体B(endothelin Breceptor,EDNRB)基因:EDNRB基因定位于13q22,有7个外显子。目前报道先天性巨结肠的该基因突变位点有12个,其中10个见于短段型巨结肠,散发性先天性巨结肠仅有7个。EDN为EDNRB的配体,将ED-NRB/EDN称为EDN信号通路。可能是EDNRB基因或EDN基因改变,引起G-蛋白的结构异常与功能丧失,导致内皮素信号通路破坏。
近年来证明,先天性巨结肠合并耳聋、色素异常(Sah-Waardenburg syndrome)的患者,与EDN3基因及性别相关转录因子Sox10(SRY-Box10)基因异常有关。人的Sox10基因定位于22q13,由于该基因与Y染色体上的性别决定基因(Sex-determiningRegion Y;SRY)有相似序列而命名。
Martucciello等(1998)总结第3次“先天性巨结肠及与神经嵴有关疾病”国际会议时指出,以上仅为理论方面研究,有关先天性巨结肠的遗传学问题仍需深入研究。
3、肠壁内微环境改变近年发现细胞外基质蛋白、免疫因素、神经生长因子(nerve growth factor,NGF)及神经生长因子受体(nerve growth factor receptor,NGFR)等肠壁内微环境改变与先天性巨结肠发病有关。
细胞外基质蛋白是胚胎早期神经嵴源细胞移行通路中的重要物质,其中纤维连接蛋白和透明质酸,为神经嵴细胞向肠内移行提供通路;层连接蛋白和Ⅳ型胶原,促进肠内神经嵴细胞的轴突生长及神经元分化。因而推测:是胚胎早期细胞外基质蛋白的改变,导致神经嵴源细胞向肠内移行终止,引起先天性巨结肠;或者使神经节细胞发育异常,引起先天性巨结肠同源病(allied disorders)。近年来研究发现,先天性巨结肠病儿痉挛段肠管中,连接蛋白、粘连素及Ⅳ型胶原等含量均比正常肠管增多,因而有人认为细胞外基质蛋白是神经嵴细胞发育、移行的必要因子,但过量也会产生相反作用:影响神经嵴源细胞的存活和发育。
Kobayashi等(1995)发现,先天性巨结肠病儿的痉挛段和移行段中,均有主要组织相容性抗原Ⅱ(MHCⅡ)表达,而正常肠壁内却看不到MHCⅡ阳性神经元或神经纤维。这种异常表达,提示免疫因素可能参与先天性巨结肠的病因。
NGF是分子量为130~140kd糖蛋白,是中枢胆碱能神经元和来源于神经嵴的感觉神经元存活所必需的因子,也是胚胎期和生后早期交感神经元和脊根神经节细胞存活和成熟所必需的。NGF能促进神经元的轴突生长和数目增多,但它需要与细胞膜上受体(NGFR)结合而发挥作用。NGFR分为高亲和力受体和低亲和力受体。高亲和力受体为TrkA,它是与细胞信号传递有关的原癌基因Trk编码的蛋白产物之一;低亲和力受体是一种分子量为75kd的蛋白质,故称P75蛋白,即P75-NGFR。我们研究发现:先天性巨结肠的正常结肠黏膜固有层和黏膜肌层中,有大量的P75-NGFR阳性纤维,黏膜下和肌间神经丛中神经节细胞,表现为P75-NGFR强阳性;痉挛段肠管黏膜固有层和黏膜肌层中,P75-NGFR阳性纤维明显减少或缺如,黏膜下和肌间粗大神经纤维的神经束膜,表现为P75-NGFR强阳性,像一个红环包绕在异常的神经束周围。说明先天性巨结肠的痉挛段肠管有NGF及P75-NGFR发育缺陷,提示先天性巨结肠的病因可能与P75-NGFR异常有关。
Rabizadeh等研究发现P75-NGFR与细胞凋亡(apoptosis)或称程序性细胞死亡(programmed cell death)有关。P75-NGFR的结构与其他生长因子受体或激素受体分子没有相似性,却与肿瘤坏死因子受体(TNFR)、人类细胞表面抗原Fas(Apo-Ⅰ)、B细胞抗原CD-40有同源顺序,而这些因子均控制细胞死亡。在细胞培养过程中使细胞表达P-75NGFR,则细胞死亡明显增多,加入其单克隆抗体或NGF后,促细胞死亡作用被抑制,当P-75NGFR与NGF结合时,促进细胞生长作用增强。说明P-75NGFR促进细胞死亡。先天性巨结肠痉挛段中,神经纤维束膜上有大量P-75NGFR表达,是否与神经节细胞发育异常有关,尚需进一步研究。
4、其他因素先天性巨结肠的病因,除与遗传及肠壁内微环境改变有关外,肯定还有其他因素参与。但与哪些因素有关,正是今后的研究内容。
王练英等(1996)检测先天性巨结肠病儿的巨细胞病毒(CMV),结果病儿尿中CMV分离率明显高于正常儿(P